Modifier and Type | Method and Description |
---|---|
static int |
JCudnn.cudnnCreatePersistentRNNPlan(cudnnRNNDescriptor rnnDesc,
int minibatch,
int dataType,
cudnnPersistentRNNPlan plan)
Expensive.
|
static int |
JCudnn.cudnnCreateRNNDescriptor(cudnnRNNDescriptor rnnDesc) |
static int |
JCudnn.cudnnDestroyRNNDescriptor(cudnnRNNDescriptor rnnDesc) |
static int |
JCudnn.cudnnFindRNNBackwardDataAlgorithmEx(cudnnHandle handle,
cudnnRNNDescriptor rnnDesc,
int seqLength,
cudnnTensorDescriptor[] yDesc,
Pointer y,
cudnnTensorDescriptor[] dyDesc,
Pointer dy,
cudnnTensorDescriptor dhyDesc,
Pointer dhy,
cudnnTensorDescriptor dcyDesc,
Pointer dcy,
cudnnFilterDescriptor wDesc,
Pointer w,
cudnnTensorDescriptor hxDesc,
Pointer hx,
cudnnTensorDescriptor cxDesc,
Pointer cx,
cudnnTensorDescriptor[] dxDesc,
Pointer dx,
cudnnTensorDescriptor dhxDesc,
Pointer dhx,
cudnnTensorDescriptor dcxDesc,
Pointer dcx,
float findIntensity,
int requestedAlgoCount,
int[] returnedAlgoCount,
cudnnAlgorithmPerformance[] perfResults,
Pointer workspace,
long workSpaceSizeInBytes,
Pointer reserveSpace,
long reserveSpaceSizeInBytes) |
static int |
JCudnn.cudnnFindRNNBackwardWeightsAlgorithmEx(cudnnHandle handle,
cudnnRNNDescriptor rnnDesc,
int seqLength,
cudnnTensorDescriptor[] xDesc,
Pointer x,
cudnnTensorDescriptor hxDesc,
Pointer hx,
cudnnTensorDescriptor[] yDesc,
Pointer y,
float findIntensity,
int requestedAlgoCount,
int[] returnedAlgoCount,
cudnnAlgorithmPerformance[] perfResults,
Pointer workspace,
long workSpaceSizeInBytes,
cudnnFilterDescriptor dwDesc,
Pointer dw,
Pointer reserveSpace,
long reserveSpaceSizeInBytes) |
static int |
JCudnn.cudnnFindRNNForwardInferenceAlgorithmEx(cudnnHandle handle,
cudnnRNNDescriptor rnnDesc,
int seqLength,
cudnnTensorDescriptor[] xDesc,
Pointer x,
cudnnTensorDescriptor hxDesc,
Pointer hx,
cudnnTensorDescriptor cxDesc,
Pointer cx,
cudnnFilterDescriptor wDesc,
Pointer w,
cudnnTensorDescriptor[] yDesc,
Pointer y,
cudnnTensorDescriptor hyDesc,
Pointer hy,
cudnnTensorDescriptor cyDesc,
Pointer cy,
float findIntensity,
int requestedAlgoCount,
int[] returnedAlgoCount,
cudnnAlgorithmPerformance[] perfResults,
Pointer workspace,
long workSpaceSizeInBytes) |
static int |
JCudnn.cudnnFindRNNForwardTrainingAlgorithmEx(cudnnHandle handle,
cudnnRNNDescriptor rnnDesc,
int seqLength,
cudnnTensorDescriptor[] xDesc,
Pointer x,
cudnnTensorDescriptor hxDesc,
Pointer hx,
cudnnTensorDescriptor cxDesc,
Pointer cx,
cudnnFilterDescriptor wDesc,
Pointer w,
cudnnTensorDescriptor[] yDesc,
Pointer y,
cudnnTensorDescriptor hyDesc,
Pointer hy,
cudnnTensorDescriptor cyDesc,
Pointer cy,
float findIntensity,
int requestedAlgoCount,
int[] returnedAlgoCount,
cudnnAlgorithmPerformance[] perfResults,
Pointer workspace,
long workSpaceSizeInBytes,
Pointer reserveSpace,
long reserveSpaceSizeInBytes) |
static int |
JCudnn.cudnnGetRNNBackwardDataAlgorithmMaxCount(cudnnHandle handle,
cudnnRNNDescriptor rnnDesc,
int[] count) |
static int |
JCudnn.cudnnGetRNNBackwardWeightsAlgorithmMaxCount(cudnnHandle handle,
cudnnRNNDescriptor rnnDesc,
int[] count) |
static int |
JCudnn.cudnnGetRNNDescriptor(cudnnHandle handle,
cudnnRNNDescriptor rnnDesc,
int[] hiddenSize,
int[] numLayers,
cudnnDropoutDescriptor dropoutDesc,
int[] inputMode,
int[] direction,
int[] mode,
int[] algo,
int[] dataType) |
static int |
JCudnn.cudnnGetRNNForwardInferenceAlgorithmMaxCount(cudnnHandle handle,
cudnnRNNDescriptor rnnDesc,
int[] count) |
static int |
JCudnn.cudnnGetRNNForwardTrainingAlgorithmMaxCount(cudnnHandle handle,
cudnnRNNDescriptor rnnDesc,
int[] count) |
static int |
JCudnn.cudnnGetRNNLinLayerBiasParams(cudnnHandle handle,
cudnnRNNDescriptor rnnDesc,
int pseudoLayer,
cudnnTensorDescriptor xDesc,
cudnnFilterDescriptor wDesc,
Pointer w,
int linLayerID,
cudnnFilterDescriptor linLayerBiasDesc,
Pointer linLayerBias) |
static int |
JCudnn.cudnnGetRNNLinLayerMatrixParams(cudnnHandle handle,
cudnnRNNDescriptor rnnDesc,
int pseudoLayer,
cudnnTensorDescriptor xDesc,
cudnnFilterDescriptor wDesc,
Pointer w,
int linLayerID,
cudnnFilterDescriptor linLayerMatDesc,
Pointer linLayerMat) |
static int |
JCudnn.cudnnGetRNNMatrixMathType(cudnnRNNDescriptor rnnDesc,
int[] mType) |
static int |
JCudnn.cudnnGetRNNParamsSize(cudnnHandle handle,
cudnnRNNDescriptor rnnDesc,
cudnnTensorDescriptor xDesc,
long[] sizeInBytes,
int dataType) |
static int |
JCudnn.cudnnGetRNNProjectionLayers(cudnnHandle handle,
cudnnRNNDescriptor rnnDesc,
int[] recProjSize,
int[] outProjSize) |
static int |
JCudnn.cudnnGetRNNTrainingReserveSize(cudnnHandle handle,
cudnnRNNDescriptor rnnDesc,
int seqLength,
cudnnTensorDescriptor[] xDesc,
long[] sizeInBytes) |
static int |
JCudnn.cudnnGetRNNWorkspaceSize(cudnnHandle handle,
cudnnRNNDescriptor rnnDesc,
int seqLength,
cudnnTensorDescriptor[] xDesc,
long[] sizeInBytes)
dataType in weight descriptors and input descriptors is used to describe storage
|
static int |
JCudnn.cudnnRNNBackwardData(cudnnHandle handle,
cudnnRNNDescriptor rnnDesc,
int seqLength,
cudnnTensorDescriptor[] yDesc,
Pointer y,
cudnnTensorDescriptor[] dyDesc,
Pointer dy,
cudnnTensorDescriptor dhyDesc,
Pointer dhy,
cudnnTensorDescriptor dcyDesc,
Pointer dcy,
cudnnFilterDescriptor wDesc,
Pointer w,
cudnnTensorDescriptor hxDesc,
Pointer hx,
cudnnTensorDescriptor cxDesc,
Pointer cx,
cudnnTensorDescriptor[] dxDesc,
Pointer dx,
cudnnTensorDescriptor dhxDesc,
Pointer dhx,
cudnnTensorDescriptor dcxDesc,
Pointer dcx,
Pointer workspace,
long workSpaceSizeInBytes,
Pointer reserveSpace,
long reserveSpaceSizeInBytes) |
static int |
JCudnn.cudnnRNNBackwardWeights(cudnnHandle handle,
cudnnRNNDescriptor rnnDesc,
int seqLength,
cudnnTensorDescriptor[] xDesc,
Pointer x,
cudnnTensorDescriptor hxDesc,
Pointer hx,
cudnnTensorDescriptor[] yDesc,
Pointer y,
Pointer workspace,
long workSpaceSizeInBytes,
cudnnFilterDescriptor dwDesc,
Pointer dw,
Pointer reserveSpace,
long reserveSpaceSizeInBytes) |
static int |
JCudnn.cudnnRNNForwardInference(cudnnHandle handle,
cudnnRNNDescriptor rnnDesc,
int seqLength,
cudnnTensorDescriptor[] xDesc,
Pointer x,
cudnnTensorDescriptor hxDesc,
Pointer hx,
cudnnTensorDescriptor cxDesc,
Pointer cx,
cudnnFilterDescriptor wDesc,
Pointer w,
cudnnTensorDescriptor[] yDesc,
Pointer y,
cudnnTensorDescriptor hyDesc,
Pointer hy,
cudnnTensorDescriptor cyDesc,
Pointer cy,
Pointer workspace,
long workSpaceSizeInBytes) |
static int |
JCudnn.cudnnRNNForwardTraining(cudnnHandle handle,
cudnnRNNDescriptor rnnDesc,
int seqLength,
cudnnTensorDescriptor[] xDesc,
Pointer x,
cudnnTensorDescriptor hxDesc,
Pointer hx,
cudnnTensorDescriptor cxDesc,
Pointer cx,
cudnnFilterDescriptor wDesc,
Pointer w,
cudnnTensorDescriptor[] yDesc,
Pointer y,
cudnnTensorDescriptor hyDesc,
Pointer hy,
cudnnTensorDescriptor cyDesc,
Pointer cy,
Pointer workspace,
long workSpaceSizeInBytes,
Pointer reserveSpace,
long reserveSpaceSizeInBytes) |
static int |
JCudnn.cudnnSetPersistentRNNPlan(cudnnRNNDescriptor rnnDesc,
cudnnPersistentRNNPlan plan)
Attaches the plan to the descriptor.
|
static int |
JCudnn.cudnnSetRNNAlgorithmDescriptor(cudnnHandle handle,
cudnnRNNDescriptor rnnDesc,
cudnnAlgorithmDescriptor algoDesc) |
static int |
JCudnn.cudnnSetRNNDescriptor_v5(cudnnRNNDescriptor rnnDesc,
int hiddenSize,
int numLayers,
cudnnDropoutDescriptor dropoutDesc,
int inputMode,
int direction,
int mode,
int dataType) |
static int |
JCudnn.cudnnSetRNNDescriptor_v6(cudnnHandle handle,
cudnnRNNDescriptor rnnDesc,
int hiddenSize,
int numLayers,
cudnnDropoutDescriptor dropoutDesc,
int inputMode,
int direction,
int mode,
int algo,
int dataType)
DEPRECATED routines to be removed next release :
User should use the non-suffixed version (which has the API and functionality of _v6 version)
Routines with _v5 suffix has the functionality of the non-suffixed routines in the CUDNN V6
|
static int |
JCudnn.cudnnSetRNNDescriptor(cudnnHandle handle,
cudnnRNNDescriptor rnnDesc,
int hiddenSize,
int numLayers,
cudnnDropoutDescriptor dropoutDesc,
int inputMode,
int direction,
int mode,
int algo,
int dataType) |
static int |
JCudnn.cudnnSetRNNMatrixMathType(cudnnRNNDescriptor rnnDesc,
int mType) |
static int |
JCudnn.cudnnSetRNNProjectionLayers(cudnnHandle handle,
cudnnRNNDescriptor rnnDesc,
int recProjSize,
int outProjSize) |
Copyright © 2018. All rights reserved.